A comparative study of Lagrange and Gregory forward interpolation techniques for estimating new student enrollment trends in the faculty of Tarbiyah at IAIN Kediri
DOI:
https://doi.org/10.30762/f_m.v7i13179Keywords:
Lagrange Interpolation, Newton Gregory Forward polynomial interpolation, student enrollment prediction, comparative studyAbstract
Penelitian ini bertujuan untuk mengeksplorasi penggunaan metode interpolasi polinom Lagrange dan interpolasi polinom Newton-Gregory forward dalam mengestimasi tren pendaftaran mahasiswa baru di beberapa program studi di Fakultas Tarbiyah IAIN Kediri. Data historis pendaftaran mahasiswa baru selama lima tahun terakhir digunakan sebagai dasar analisis. Metode penelitian ini menggunakan pendekatan kuantitatif dengan desain deskriptif dan komparatif. Pendekatan deskriptif digunakan untuk menggambarkan tren pendaftaran mahasiswa baru, sedangkan pendekatan komparatif digunakan untuk membandingkan akurasi prediksi antara kedua metode interpolasi. Hasil penelitian menunjukkan bahwa interpolasi Gregory Forward umumnya memberikan hasil yang lebih akurat dibandingkan interpolasi Lagrange, terutama untuk program studi seperti Manajemen Pendidikan Islam dan Pendidikan Bahasa Arab, dengan nilai MAE, MAPE, dan RMSE yang lebih rendah. Namun, interpolasi Lagrange menunjukkan performa yang lebih baik pada beberapa program studi, seperti Tadris Bahasa Indonesia dan Tadris IPA. Misalnya, untuk program studi Tadris Bahasa Indonesia, interpolasi Lagrange memiliki MAE sebesar 6.8, MAPE 1%, dan RMSE 13.05, yang secara signifikan lebih rendah dibandingkan dengan metode Gregory Forward. Kesimpulan dari penelitian ini menunjukkan bahwa tidak ada satu metode yang selalu unggul untuk semua program studi. Oleh karena itu, pemilihan metode interpolasi yang paling sesuai harus didasarkan pada karakteristik data spesifik dari setiap program studi. Penelitian ini memberikan kontribusi penting dalam bidang perencanaan akademik dengan menyediakan model prediksi yang lebih akurat, yang diharapkan dapat meningkatkan efisiensi dan efektivitas pengelolaan sumber daya di Fakultas Tarbiyah IAIN Kediri.
This study explores the Lagrange polynomial and Newton Gregory Forward polynomial interpolation methods in estimating new student enrollment trends in several study programs at the Faculty of Tarbiyah, IAIN Kediri. Historical data on new student enrollments over the past five years was analyzed. This research employs a quantitative approach with descriptive and comparative designs. The descriptive approach is used to depict new student enrollment trends, while the comparative approach compares the prediction accuracy between the two interpolation methods. The results indicate that the Gregory Forward interpolation generally provides more accurate results than the Lagrange interpolation, particularly for study programs such as Islamic Education Management and Arabic Language Education, as evidenced by lower MAE, MAPE, and RMSE values. However, the Lagrange interpolation performs better in some study programs, such as Indonesian Language Teaching and Natural Sciences Teaching. For example, the Lagrange interpolation for the Indonesian Language Teaching program has an MAE of 6.8, MAPE of 1%, and RMSE of 13.05, significantly lower than the Gregory Forward method. The conclusion of this study suggests that no single method is consistently superior for all study programs. Therefore, selecting the most appropriate interpolation method should be based on the specific data characteristics of each study program. This research contributes significantly to academic planning by providing a more accurate predictive model, which is expected to enhance the efficiency and effectiveness of resource management at the Faculty of Tarbiyah, IAIN Kediri.
Downloads
References
Ahadiyah, K., & Dewi, A. F. (2022). Comparison of the Generalized Ammi Model (Gammi) with the Row Column Interaction Model on Genotype and Environmental Interactions. Journal Focus Action of Research Mathematic (Factor M), 4(2), 55–64. https://doi.org/10.30762/factor_m.v4i2.4189
Berrut, J.-P., & Trefethen, L. N. (2004). Barycentric Lagrange Interpolation. SIAM Review, 46(3), 501–517. https://doi.org/10.1137/S0036144502417715
Bocher, P., De Meyer, H., & Vanden Berghe, G. (1994). Modified Gregory formulae based on mixed interpolation. International Journal of Computer Mathematics, 52(1–2), 109–122. https://doi.org/10.1080/00207169408804295
Chen, S.-M. (2002). FORECASTING ENROLLMENTS BASED ON HIGH-ORDER FUZZY TIME SERIES. Cybernetics and Systems, 33(1), 1–16. https://doi.org/10.1080/019697202753306479
CHENG, C., CHEN, T., TEOH, H., & CHIANG, C. (2008). Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert Systems with Applications, 34(2), 1126–1132. https://doi.org/10.1016/j.eswa.2006.12.021
Gautschi, W. (2012). Numerical Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8259-0
Ministry of Education and Culture. (2024). PDDikti - Higher Education Database. https://pddikti.kemdikbud.go.id/data_pt/MzQ0NTI1QTAtMDQyNy00NzU2LUIyMjUtRjA4QUVEMjI0OUQ4
Laksono, H. D., Afrianita, R. D., Pebriana, N., & Darwison. (2018). Numerical Method with MATLAB Edition 2. Technosain/Graha Ilmu. https://doi.org/10.2991/978-602-5759-80-2
Muhammad Julian, Lukita Ambarwati, & Yudi Mahatma. (2022). Determination of the Optimum Degree of Interpolation in the Lagrange Method and Newton Gregory Method in Estimating Cases of Patients Recovered from Covid-19 in Indonesia. JMT: Journal of Mathematics and Application, 4(1), 11–18. https://doi.org/10.21009/jmt.4.1.2
Munir, R. (2006). Metode numerik revisi kedua. https://www.semanticscholar.org/paper/8689e393db77fb1f4570db3a3d800d660a1f37a6
Sugiyono. (2016). Educational Research Methods (Quantitative, Qualitative, and R&D Approaches) (Print to). Alphabeta.
Syamsudin, A. (2020). Analysis of Java Programming Coding Errors in the Programming Algorithm Course for Mathematics Students of IAIN Kediri. Journal Focus Action of Research Mathematic (Factor M), 2(2), 102–114. https://doi.org/10.30762/factor_m.v2i2.1711
Syamsudin, A. (2022). Development of a Priority Determination System for the Revision of the IAPS 4 Study Program Accreditation Criteria. 0 with the Analytic Hierarchy Process Method at IAIN Kediri. Journal of Informatics, University of Pamulang, 7(1), 44–53.
Wang, Y., Liu, X., & Chen, Y. (2017). Analyzing cross-college course enrollments via contextual graph mining. PLOS ONE, 12(11), e0188577. https://doi.org/10.1371/journal.pone.0188577
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmad Syamsudin, M. Syamsul Ma'arif
This work is licensed under a Creative Commons Attribution 4.0 International License.