Vector Autoregressive (VAR) modeling for weather forecasting in Madura

Authors

  • Ira Yudistira Universitas Islam Madura
  • Kuzair Universitas islam Madura
  • Faisol Universitas islam Madura

DOI:

https://doi.org/10.30762/f_m.v7i2.3486

Keywords:

Air Temperature, Air Humidity, Forecasting, Vector Autoregressive

Abstract

Air temperature, air humidity and sunlight are interconnected weather elements. The high and low intensity of solar radiation affects air temperature, while air temperature affects air humidity.  These three elements have an important role in global climate change and human activities on earth. In the agricultural sector, air temperature, air humidity and sunlight influence plant growth and development. These three elements also influence the water supply on earth. Information about these three weather elements is very important for Madura, where the majority of the population are farmers and planters, to determine more effective planting patterns. This research aims to create a model that can predict these three elements so that Madurese farmers and planters can plan planting patterns. A forecasting model that is able to handle predictions of several correlated variables is the Vector Autoregressive (VAR) model. The forecasting model obtained in this research is the VAR(5) model. MAPE for air temperature shows accurate forecasting results with a value of 2.3186%, while for air humidity and solar radiation shows quite accurate forecasting results with values ​​of 29.6125% and 36.4231% respectively.

Downloads

Download data is not yet available.

References

Aktivani, S. (2020). Uji stasioneritas data inflasi Kota Padang periode 2014-2019. Statistika: Forum teori dan aplikasi statistika, 20(2), 83-90. https://ejournal.unisba.ac.id/index.php/statistika/article/view/7257.

Anetor, F. O. (2019). Economic growth effect of private capital inflows: a structural VAR approach for Nigeria. Journal of Economics and Development, 21(1), 18-29. https://doi.org/10.1108/JED-06-2019-0009.

Chen, J. F., Do, Q. H., Nguyen, T. V. A., & Doan, T. T. H. (2018). Forecasting monthly electricity demands by wavelet neuro-fuzzy system optimized by heuristic algorithms. Information, 9(3), 51. https://doi.org/10.3390/info9030051.

Chiu, C. W., Mumtaz, H., & Pintér, G. (2015). Forecasting with VAR models: fat tails and stochastic volatility. International Journal of Forecasting, 33(24), 1124-1143. https://doi.org/10.1016/j.ijforecast.2017.03.001.

Choudhary, A., Pandey, D., & Bhardwaj, S. (2020). Artificial neural networks based solar radiation estimation using backpropagation algorithm. International Journal of Renewable Energy Research (IJRER), 10(4), 1566-1575. https://doi.org/10.20508/ijrer.v10i4.11373.g8041.

Deqita, A. (2022). Artikel analisis intensitas radiasi matahari dan peningkatan suhu lingkungan. Jurnal Pendidikan Fisika Dan Sains, 5(2), 76-82. https://doi.org/10.52188/jpfs.v5i2.237.

Dinh, D. V. (2020). Impulse response of inflation to economic growth dynamics: VAR model analysis. Journal of Asian Finance, Economics and Business, 7(9), 219-228. https://dx.doi.org/10.13106/jafeb.2020.vol7.no9.219.

Dwiyanti, Z. A., & Prianto, C. (2023). Prediksi cuaca kota Jakarta menggunakan metode Random Forest. Jurna Tekno Insentif, 17(2), 127-137. https://doi.org/10.36787/jti.v17i2.1136.

Ekwueme, B. N., & Agunwamba, J. C. (2021). Trend analysis and variability of air temperature and rainfall in regional river basins. Civil Engineering Journal, 7(5), 816-826. https://doi.org/10.28991/cej-2021-03091692.

Faisol, F., Ukhrowi, P., Mardianto, M. F., Yudistira, I., & Kuzairi, K. (2022). Comparison of salinity and seawater temperature predictions using var and biresponse fourier series estimator. Barekeng: Journal of Mathematics and Its Application, 16(4), 1465–1476. https://doi.org/10.30598/barekengvol16iss4pp1465-1476.

Guibert, Q., Lopez , O., & Piette, P. (2019). Forecasting mortality rate improvements with a high-dimensional VAR. Insurance: Mathematics and Economics, 88, 255-272. https://doi.org/10.1016/j.insmatheco.2019.07.004.

Hadi, A. F., Yudistira, I., Anggraeni, D., & Hasan, M. (2018). The Geographical Clustering of The Rainfall Stations on Seasonal GSTAR Modeling for Rainfall Forecasting. In Journal of Physics, (Vol. 1028, No. 1, p. 012238). IOP Publishing. https://doi.org/10.1088/1742-6596/1028/1/012238.

Hardani, P. R., Hoyyi, A., & Sudarno, S. (2016). Peramalan laju inflasi, suku bunga indonesia dan indeks harga saham gabungan menggunakan metode vector autoregressive (VAR). Gaussian, 6(1), 101-110. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14773.

Hikmah, H., Asrirawan, A., Apriyanto, A., & Nilawati, N. (2023). Peramalan data cuaca ekstrim Indonesia menggunakan model ARIMA dan Recurrent Neural Network. Jambura: Journal of Mathematics, 5(1), 230–242. https://doi.org/10.34312/jjom.v5i1.17496.

Ikefuti, P. V., Barrozo, L. V., & Braga, A. L. (2018). Mean air temperature as a risk factor for stroke mortality in São Paulo, Brazil. International Journal of Biometeorology, 62, 1535–1542. https://doi.org/10.1007/s00484-018-1554-y.

Istantinova, D. B. (2013). Pengaruh kecepatan angin, kelembaban dan suhu udara terhadap konsentrasi gas pencemar Sulfur Dioksida (SO2) dalam udara ambien di sekitar PT. Inti general yaja steel Semarang. Jurnal Teknik Lingkungan, 2(1), 1-10. https://ejournal3.undip.ac.id/index.php/tlingkungan/article/view/2673/2666.

Jaisyurahman, U., Wirnas, D., Trikoesoemaningtyas, T., & Purnamawati, H. (2019). Dampak Suhu Tinggi terhadap Pertumbuhan dan Hasil Tanaman Padi. Indonesian Journal of Agronomy, 47(3), 248-254. https://dx.doi.org/10.24831/jai.v47i3.24892.

Johan, H., Utomo, N., & Wardana, R. W. (2022). Effect of air temperature, air humidity, air speed and light intensity on solar panel electricity. EduFisika: Jurnal Pendidikan Fisika, 7(1), 55-61. https://doi.org/10.59052/edufisika.v7i1.19963.

Khan, M. S., & Khan, U. (2020). Comparison of forecasting performance with VAR vs. ARIMA models using economic variables of Bangladesh. Asian Journal of Probability and Statistics, 10(2), 33-47. https://doi.org/10.9734/ajpas/2020/v10i230243.

Man , Y., Hu, Y., & Ren, J. (2019). Forecasting COD load in municipal sewage based on ARMA and VAR algorithms. Resources, Conservation and Recycling, 144, 56-64. https://doi.org/10.1016/j.resconrec.2019.01.030.

Marni, M., & Jumarang, M. I. (2016). Analisis hubungan kelembaban udara dan suhu udara terhadap parameter tebal hujan di kota Pontianak. Prisma Fisika, 4(3), 80-83. https://jurnal.untan.ac.id/index.php/jpfu/article/view/16830.

Prastania, M. S., & Sanoto, H. (2021). Korelasi antara supervisi akademik dengan kompetensi profesional guru di sekolah dasar. Jurnalbasicedu, 5(2), 861-868. https://doi.org/10.31004/basicedu.v5i2.834%5B1.

Sihombing, P. R., & Susilowati, B. E. (2019). Aplikasi model Vector Autoregressive (VAR) pada data tamu mancanegara di hotel bintang dan nonbintang di Daerah Istimewa Yogyakarta. Jurnal Statistika dan Aplikasinya (JSA), 3(2), 6-15. https://doi.org/10.21009/JSA.03202.

Susanti, L., Hasanah, P., & Winarni, W. (2020). Peramalan suhu udara dan dampaknya terhadap konsumsi energi listrik di Kalimantan Timur. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(3), 399-412. https://doi.org/10.30598/barekengvol14iss3pp399-412.

Vivas, E., Allende-Cid, H., & Salas , R. (2020). A systematic review of statistical and machine learning methods for electrical power forecasting with reported MAPE score. Entropy, 22(12), 1412. https://doi.org/10.3390/e22121412.

Windasari, W. (2018). Pendekatan analisis Vector Auto Regression (VAR) dalam hubungan harga saham sektor infrastruktur dan manufaktur, AdMathEdu, 8(1), 105-115. https://doi.org/10.12928/admathedu.v8i1.11124.

Wulandary, S. (2020). Vector Autoregressive Integrated (VARI) method for forecasting the number of internasional visitor in Batam and Jakarta. JMSK: Jurnal Matematika, Statistika, dan komputasi, 17(1), 94-108. https://doi.org/10.20956/jmsk.v17i1.10536%5B2.

Downloads

Published

31-12-2024

How to Cite

Yudistira, I., Kuzair, & Faisol. (2024). Vector Autoregressive (VAR) modeling for weather forecasting in Madura. Journal Focus Action of Research Mathematic (Factor M), 7(2), 134–148. https://doi.org/10.30762/f_m.v7i2.3486