Application of binary logistic regression analysis to factors that influence participation in the 2024 presidential election

Authors

  • Kurnia Ahadiyah Institut Agama Islam Negeri (IAIN) Kediri
  • Ardiana Fatma Dewi Institut Agama Islam Negeri (IAIN) Kediri
  • Shinta Hircatanu Romadewanti Cambridge University, Cambridge, England

DOI:

https://doi.org/10.30762/f_m.v7i2.3703

Keywords:

Social Media, Political Participation, Binary Logistic Regression

Abstract

Social media plays a very influential role, especially in the world of politics and elections. The 2024 elections in Indonesia show how social media can influence political dynamics. This research aims to analyze the influence of social media on the political participation of IAIN Kediri students in the 2024 Presidential Election, as well as understand how social media shapes public opinion and polarizes political views, with a focus on its impact on political participation among students. Data from the Indonesian Internet Service Providers Association (APJII) shows that the majority of the Indonesian population actively uses social media, so political candidates use platforms such as YouTube, Facebook, Instagram, and TikTok to attract support. Social media accelerates the delivery of political messages and has the potential to strengthen polarization and spread misleading information. In this research, a binary logistic regression model is used to analyze the factors that influence student participation in the 2024 presidential election. The findings show that students who actively follow news in mass media have a 7,157 times greater chance of participating in the 2024 presidential election compared to those who do not follow the news. These results emphasize the importance of social media in motivating political participation among students and provide insight into how social media can be utilized to improve the integrity and quality of democracy.

Downloads

Download data is not yet available.

References

Adnan, M. and Mona, N. (2024) ‘Strategi Komunikasi Politik melalui Media Sosial oleh Calon Presiden Indonesia 2024’, Politika: Jurnal Ilmu Politik, 15(1), pp. 1–20. Available at: https://doi.org/10.14710/politika.15.1.2024.1-20.

Bashori, K. (2018) ‘Pendidikan Politik di Era Disrupsi’, Sukma: Jurnal Pendidikan, 2(2), pp. 287–310. Available at: https://doi.org/10.32533/02207.2018.

Budiastuti, D. & Bandur, A. (2018). Validitas dan Reliabilitas Penelitian Analisis dengan NVIVO, SPSS, dan AMOS. Penerbit Mitra Wacana Media.

Draper, N. R. & Smith, H. (1998). Applied Regression Analysis. 3rd ed. John Wiley & Sons, Inc New York.

Faradis, N. et al. (2023) ‘Media Sosial dan Persepsi Publik: Analisis Strategi Kampanye Digital Calon Presiden Indonesia 2024’, Prosiding Seminar Nasional, pp. 643–652.

Fauziah, S. and Tabah Herisetiawan (2024) ANALISIS FAKTOR-FAKTOR YANG MEMPERNGARUHI PERPINDAHAN KONSUMEN DARI SUATU PROVIDER INTERNET KE PROVIDER LAIN DENGAN ANALISIS FAKTOR. Ninth.

Fathona, C. et al. (2023) ‘Analisis Politik Media Sosial Terhadap Demokrasi Di Indonesia Menurut Perspektif Siyasah Pendahuluan’, 1(2), pp. 109–126.

Ghozali, Imam. (2016). Aplikasi Analisis Multivariete Dengan Program IBM SPSS 23 (Edisi 8) cetakan ke VIII. Badan Penerbit Universitas Diponegoro Semarang.

Gunawan, R. et al. (2021) ‘Social Media and Gadget Addiction by Internet Users in Indonesia (Adiksi Media Sosial dan Gadget bagi Pengguna Internet di Indonesia)’, Techno-Socio Ekonomika, 14(1), pp. 1–14.

Hasanah, N., Anggraini, T. and Harahap, R.D. (2022) ‘Pengaruh Gaya Hidup, Media Sosial dan Lingkungan Sosial terhadap Perilaku Konsumsi di Masa Pandemi Menurut Ekonomi Islam’:, MES Management Journal, 2(1), pp. 1–13. Available at: https://doi.org/10.56709/mesman.v2i1.36.

Hosmer, D. W. & Lemeshow, S. (2004). Applied Logistic Regression. John Willey and Sons New York.

Nainggolan, V., Randonuwu, S.A. and Waleleng, G.J. (2018) ‘Peranan Media Sosial Instagram dalam Interaksi Sosial Antar Mahasiswa Fakultas Ilmu Sosial dan Politik Unsrat Manado’, Jurnal Acta Diurna, 7(4), pp. 1–15. Available at: https://ejournal.unsrat.ac.id/index.php/actadiurnakomunikasi/article/view/22022.

Pratiwi, R. & Dewi, A. F. (2021). Analisis Regresi Logistik Biner pada Pengaruh Harga, Kualitas Pelayanan dan Promosi terhadap Kepuasan Pelanggan dalam Menggunakan Jasa Layanan Grab di Kabupaten Lamongan. INFERENSI, Vol. 4(2), 77-84. https://doi:10.12962/j27213862.v4i2.8637

Rafiq, Muhammad dkk. (2023). Analisis Regresi Logistik Biner Untuk Memprediksi Faktor-Faktor Internal Yang Memengaruhi Keharmonisan Rumah Tangga Menurut Provinsi di Indonesia Pada Tahun 2021. Prosiding Seminar Nasional Matematika dan Statistika, 3(1), 116-127.

Roflin, E., Riana, F., Munarsih, E., Pariyana & Liberty, I. A. (2023). Regresi Logistik Biner dan Multinomial. Penerbit Nasya Expanding Management

Sekaran, U. & Bougie, R. (2010). Research Method For Business: A Skill Building Approach. New York : John Wiley & Sons. Adnan, M. and Mona, N. (2024) ‘Strategi Komunikasi Politik melalui Media Sosial oleh Calon Presiden Indonesia 2024’, Politika: Jurnal Ilmu Politik, 15(1), pp. 1–20. Available at: https://doi.org/10.14710/politika.15.1.2024.1-20.

Syaiful, A. (2023) ‘Peran Mahasiswa sebagai Agen Perubahan di Masyarakat’, Journal of Instructional and Development Researches, 3(1), pp. 29–34. Available at: https://doi.org/10.53621/jider.v3i1.102.

Wulandari, C.D. (2023) ‘Fenomena Buzzer Di Media Sosial Jelang Pemilu 2024 Dalam Perspektif Komunikasi Politik’, Avant Garde, 11(1), p. 134. Available at: https://doi.org/10.36080/ag.v11i1.2380.

Zempi, C.N., Kuswanti, A. and Maryam, S. (2023) ‘Analisis Peran Media Sosial Dalam Pembentukan Pengetahuan Politik Masyarakat’, Ekspresi Dan Persepsi : Jurnal Ilmu Komunikasi, 6(1), pp. 116–123. Available at: https://doi.org/10.33822/jep.v6i1.5286.

Downloads

Published

31-12-2024

How to Cite

Ahadiyah, K., Dewi, A. F., & Romadewanti, S. H. (2024). Application of binary logistic regression analysis to factors that influence participation in the 2024 presidential election . Journal Focus Action of Research Mathematic (Factor M), 7(2), 35–49. https://doi.org/10.30762/f_m.v7i2.3703